2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing 2010
DOI: 10.1109/ccgrid.2010.112
|View full text |Cite
|
Sign up to set email alerts
|

An Analysis of Traces from a Production MapReduce Cluster

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

5
178
1
1

Year Published

2012
2012
2019
2019

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 255 publications
(185 citation statements)
references
References 15 publications
5
178
1
1
Order By: Relevance
“…The trace analyzed in [18] shows 9% jobs are reducemostly. In this test, we experimented with two reduce-mostly applications: ts-reduce and matrix multiplication.…”
Section: Results For Reduce-mostly Jobsmentioning
confidence: 99%
See 2 more Smart Citations
“…The trace analyzed in [18] shows 9% jobs are reducemostly. In this test, we experimented with two reduce-mostly applications: ts-reduce and matrix multiplication.…”
Section: Results For Reduce-mostly Jobsmentioning
confidence: 99%
“…According to the study in [18], a large portion of MapReduce jobs (over 71%) are map-only. In this section, we ran two map-mostly applications: ts-map and PSA-SWG.…”
Section: A Results For Map-mostly Compute-intensive Workloadmentioning
confidence: 99%
See 1 more Smart Citation
“…Очевидно, редко используемые контейнеры можно группировать плотнее и изолировать их от более активных контейнеров, тем самым не вызывая заметных пользователям замедлений в работе приложений. Использование данных о поведении пользователей в распределенных вычислительных системах неоднократно рассматривалось разными авторами, например, для оптимизации потребления энергии [6], для задачи размещения данных [5], оптимизации расписаний в Grid [7], снижения латентности тонких клиентов [8], запуска виртуальных машин [4] и др. Во всех работах подтверждается периодичность, характерная для создаваемой пользователями нагрузки.…”
Section: управление вычислительными ресурсами в системе Unihubunclassified
“…In fact, for common MapReduce jobs, most of the time is spent in the map phase and shuffle phases, e.g., according to [22,40], only around 7% of the workload in a production MapReduce cluster are reduce heavy jobs.…”
Section: Introductionmentioning
confidence: 99%