Circuit breakers (CBs) in the transmission network are the basic elements for energy flow control. CB diagnosis represents a decisive action for increasing power system reliability and safety. Their actual availability status and ability to perform major functions can sometimes be difficult to determine. This paper presents a general state estimation model based on fuzzy logic (FL), membership function (MF), and expert knowledge for diagnosis schemes to handle unclear information in the diagnosis procedure. The proposed model uses inputs from the Supervisory Control and Data Acquisition (SCADA) system, data on the position and state of the switch, changes in current in the network element CB (NECB), start or trip action of a protection relay on the NECB, and alarm status of the CB. For the diagnostic system input variables, data from the SCADA system, along with transformer and line protection devices, are used to allow the proper formation of rules and ultimately to determine the diagnostic status of the CB. The proposed method is tested on an authentic test power system, and the outcome results are compared with a previously reported technique. The obtained test results and the comparison prove the efficiency, authenticity, and fast operation feature of the suggested strategy.