This paper presents a method to determine the performance of shuttle-based storage and retrieval systems (SBS/RS) with tiercaptive single-aisle shuttles and class-based storage policy. The use of this approach takes place both in the design process of SBS/RS and in the redesign process of SBS/RS. With this approach, it is possible to evaluate performance improvement by applying a class-based storage policy. Another beneficial scope of application of this approach is the evaluation of the placement of different classes throughout the rack to achieve the maximum throughput. The basis of this calculation method was a continuous-time open-queueing model with limited capacity. The cycle times of lifts and shuttles, as determined by a spatial value approach combined with a probability-based approach to mention the storage policy, could be directly used in the presented method with their time distributions. The data used herein were provided by a European material handling provider. An example was presented to outline how this calculation model can be used for optimizing the already existing SBS/RS via the application of a class-based storage policy. Through the example, depending on the configuration of the policy, applying the class-based storage to an existing SBS/RS would increase the throughput by up to twice the throughput without class-based storage policy.