“…= vr (r,-1,z,t) = vr (r,+1,z,t); T (0,,z,t) ; v (r,-1,z,t) = v (r,1, z,t) = v (r,-1,z,t) = v (r,+1,z,t); vz (r,-1,z,t) = vz (r,1,z,t) = vz (r,-1,z,t) = vz (r,+1,z,t); vr (r,,-L,t) = 0; vr(r,,L,t) = 0; vr (0,,z,t) ; vz(r,,-L,t) = V0; vz(rd2/2,,z[-d2/2,d2/2],0) = zcos ()tg (1); v (r,,L,t) = 0; v(0,,z,t) ; vz(r,,0,t) = 0; vz(r,,L,t) =V0, vz(r,,L,t) = V0, vz(0,,z,t) ; vr(r,,z,0) = 0; Now we will calculate solution of (5) by method of averaging functional corrections [14][15][16][17][18][19]. Equations for first-order approximations vr1, v1, vz1 of the considered components takes the form…”