In this research work, an exact analytical solution for buckling of functionally graded rectangular plates subjected to non-uniformly distributed in-plane loading acting on two opposite simply supported edges is developed. It is assumed that the plate rests on two-parameter elastic foundation and its material properties vary through the thickness of the plate as a power function. The neutral surface position for such plate is determined, and the classical plate theory based on exact neutral surface position is employed to derive the governing stability equations. Considering Levy-type solution, the buckling equation reduces to an ordinary differential equation with variable coefficients. An exact analytical solution is obtained for this equation in the form of power series using the method of Frobenius. By considering sufficient terms in power series, the critical buckling load of functionally graded plate with different boundary conditions is determined. The accuracy of presented results is verified by appropriate convergence study, and the results are checked with those available in related literature. Furthermore, the effects of power of functionally graded material, aspect ratio, foundation stiffness coefficients and in-plane loading configuration together with different combinations of boundary conditions on the critical buckling load of functionally graded rectangular thin plate are studied.