In this study, the critical (or maximum) discharge rates before saline water enters a well were determined for vertical and horizontal wells in a freshwater aquifer which is separated from a static saline aquifer by a sharp interface. Flow around the well was solved by integration of a point sink solution along the well axis, and both the critical discharge rate and critical interface rise were determined through a comparison of the heads and vertical gradients at the saline-fresh water interface. The rates were determined for vertical and horizontal wells with various lengths and depths for different aquifer salinities. Results were generalized by drawing dimensionless type curves. The results showed that the dimensionless total critical discharge rates are higher for the longer horizontal wells and longer vertical wells with a certain bottom depth, and they almost linearly decrease with well depth at rates of 0.7-0.9. For the dimensionless well length of 0.2, the dimensionless total discharge rate of a horizontal well is about 0.1 more than that of a vertical well with the same length and well-top depth. Also, the critical discharge rates per unit length of well are inversely proportional to well length and remarkably higher for shallower wells. Additionally, the critical pumping rate is proportional to the salinity difference of the aquifers. These results were confirmed by comparison to existing solutions for vertical wells with dimensionless lengths of 0.2, 0.5 and 0.6, and for critical interface rises in the range of 0.75-0.9.