2022
DOI: 10.1063/5.0098604
|View full text |Cite
|
Sign up to set email alerts
|

An analytical approach to the anomalous density of water

Abstract: Water, which is essential for the existence of life, has almost a hundred properties that distinguish it from other liquids.In this paper, we will focus on its density, which, unlike the absolute majority of other liquids, increases with increasingtemperature in the vicinity of the solid-liquid transition, for a wide range of pressures, including ambient pressure. Ourapproach will present an analytical thermodynamic formulation for this problem that has as a novelty the introductionof a variable exclusion volu… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
5
0
2

Year Published

2023
2023
2024
2024

Publication Types

Select...
6

Relationship

1
5

Authors

Journals

citations
Cited by 7 publications
(7 citation statements)
references
References 50 publications
0
5
0
2
Order By: Relevance
“…In the above development, we have determined that the two known water critical points can be predicted by a simple thermodynamic theory that combines the water two-liquid model with the variable excluded volume ( v e ) approach introduced by us . This combination leads to an EoS that generalizes the VdW equation in various ways: it generalizes the excluded volume idea, admitting that the excluded volumes need not be constant, and introduces the excluded pressure, which has a fixed form in the VdW approach but is here computed through the variation of the internal energy with respect to v e , eq .…”
Section: Final Remarks and Conclusionmentioning
confidence: 99%
See 1 more Smart Citation
“…In the above development, we have determined that the two known water critical points can be predicted by a simple thermodynamic theory that combines the water two-liquid model with the variable excluded volume ( v e ) approach introduced by us . This combination leads to an EoS that generalizes the VdW equation in various ways: it generalizes the excluded volume idea, admitting that the excluded volumes need not be constant, and introduces the excluded pressure, which has a fixed form in the VdW approach but is here computed through the variation of the internal energy with respect to v e , eq .…”
Section: Final Remarks and Conclusionmentioning
confidence: 99%
“…The above figure of speech has been used freely in the literature because there is confidence that the two-liquid model (TLM) can explain the phenomena that uniquely characterize water, and some models have been devised to make it. For example, in a recent paper some of us used this model to show analytically how the TLM can be articulated to quantify the anomalous water density behavior . Here, we will go further by showing how the TLM can describe in a unified way the two known water critical points.…”
Section: Introductionmentioning
confidence: 99%
“…Наличие максимума плотности указывает на то, что каждый из изотопологов жидкой воды не является простой однокомпонентной системой. Поэтому в литературе уже много лет активно обсуждаются различные модели гетерогенной структуры водной среды (см., например, в [7][8][9][10][11][12][13]). Аномальные свойства воды в имеющихся ныне модельных подходах чаще всего связываются с двумя формами локальных структур или кластеров.…”
Section: Introductionunclassified
“…При этом «высокоплотная» (high-density) форма характеризуется наличием заметно менее развитой сетки водородных связей, чем соответствующая «низкоплотная» (low-density) форма. Благодаря тетраэдрически-координированной или открытой структуре водной матрицы, термоактивируемое равновесие между двумя указанными структурными формами является необходимым условием для возникновения аномалий в изменении как плотности, так и молярного объема воды, с соответствующими корреляциями водородных связей, характеризующих тетраэдрическую сеть [11][12][13].…”
Section: Introductionunclassified
“…The most interesting property (or anomaly) of liquid water is that its density (at atmospheric pressure) exhibits a strongly non-monotonic temperature dependence (with a maximum at T ≈ 277 K), often understood in terms of competition between two or more competing local environments with different density and symmetry whose relative concentration is indeed determined by thermodynamic conditions [ 11 , 12 , 14 , 26 ]. Among many other water anomalies [ 1 , 27 ], we would like to recall that at atmospheric pressure, (1) the isobaric specific heat has a minimum at about T ≈ 308 K, (2) the isothermal compressibility has a minimum at about T ≈ 319 K, and (3) the coefficient of thermal expansion is negative below T ≈ 277 K. These anomalies can be understood, at least qualitatively, on the basis of two coexisting local structures of water and the associated idea of a liquid-liquid critical point (LLCP) [ 2 , 17 , 28 , 29 , 30 ].…”
Section: Introductionmentioning
confidence: 99%