In order to accurately predict the hysteresis characteristics of finger seal, the minimum hysteresis which can directly reflect the hysteresis of finger seal is proposed to characterize the hysteresis of finger seal. The mathematical model for calculating the minimum hysteresis of finger seal is established, the correction coefficient in the mathematical model is determined, and the mathematical model is verified by experiments. The influence of the structure and working condition parameters of finger laminates on the hysteresis characteristics is studied based on the modified calculation model, and the rule of influence is obtained in the end. Research results show that the maximum error between the leakage characteristics numerical calculation of finger seal base on modified calculation model and the experiment results is 7.64%, and the mathematical model of the minimum hysteresis is reasonable and reliable. The descending order of influence degree of structural parameters on the hysteresis characteristics of finger seal is: thickness of each finger laminate, finger repeat angle, arc radius of the finger beam arcs‘ centers, diameter of the finger base circle, width of the interstice between fingers, arc radius of finger beam. The research results provide a theoretical basis for further research on the influence of hysteresis on the finger seal leakage characteristics and the optimal design of finger seal structure.