2010
DOI: 10.1515/cllt.2010.011
|View full text |Cite
|
Sign up to set email alerts
|

An annotated Taiwanese Learners' Corpus of Spanish, CATE

Abstract: Español, CATE: (http://140.116.245.228/ ) -is unique for being the first and largest annotated Taiwanese learners' corpus of Spanish with multi-query functions in the on-line interface. This corpus has collaborated with other L3 learners' corpora under the integrated project entitled "Multilingual Corpora" executed by the FLLD (Department of Foreign Languages and Literatures) and technically supported by the WMMKS ( Web Mining and Multilingual Knowledge S ystem) Laboratory of CSIE (Computer Science and Informa… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
3
0
1

Year Published

2014
2014
2023
2023

Publication Types

Select...
4
2

Relationship

0
6

Authors

Journals

citations
Cited by 6 publications
(4 citation statements)
references
References 2 publications
0
3
0
1
Order By: Relevance
“…In most cases, these methods are employed differently keeping in mind the different types of end application of the annotated texts. So far we have come across several types of text annotation, such as, grammatical annotation (Garside, Leech, & McEnery, 1997;Santorini, 1990;Brants et al, 2004;Schmid, 2008); syntactic annotation (Aldebazal et al, 2009); orthographic annotation (Leech, McEnery, & Wynne, 1997), prosodic annotation (Cox, 2011), semantic annotation (Rayson & Stevenson, 2008), discoursal annotation (Kipp, Neff, & Albrecht, 2007), anaphoric annotation (Lu, 2010), etymological annotation (Dash & Hussain, 2013), figurative annotation (Oostdijk & Boves, 2008), pragmatic annotation (Archer, Culpeper, & Davies, 2008); and sociopragmatic annotation (Archer & Culpeper, 2003), etc. Also we have come across a few text encoding techniques and standards, such as, Constituent Likelihood Automatic Word-tagging System (CLAWS) (Garside, 1987;McEnery & Hardie, 2011), Text Encoding Initiative (TEI) (Sperberg-McQueen & Burnard, 1994), Hidden Markov Model (HMM) (Kupiec, 1992), COCOA annotation method (McEnery & Wilson, 1996), Dynamic Programming Method (DPM) (DeRose, 1988), and EAGLE annotation guideline (Sinclair, 1996), etc.…”
Section: What Is Corpus Annotation?mentioning
confidence: 99%
“…In most cases, these methods are employed differently keeping in mind the different types of end application of the annotated texts. So far we have come across several types of text annotation, such as, grammatical annotation (Garside, Leech, & McEnery, 1997;Santorini, 1990;Brants et al, 2004;Schmid, 2008); syntactic annotation (Aldebazal et al, 2009); orthographic annotation (Leech, McEnery, & Wynne, 1997), prosodic annotation (Cox, 2011), semantic annotation (Rayson & Stevenson, 2008), discoursal annotation (Kipp, Neff, & Albrecht, 2007), anaphoric annotation (Lu, 2010), etymological annotation (Dash & Hussain, 2013), figurative annotation (Oostdijk & Boves, 2008), pragmatic annotation (Archer, Culpeper, & Davies, 2008); and sociopragmatic annotation (Archer & Culpeper, 2003), etc. Also we have come across a few text encoding techniques and standards, such as, Constituent Likelihood Automatic Word-tagging System (CLAWS) (Garside, 1987;McEnery & Hardie, 2011), Text Encoding Initiative (TEI) (Sperberg-McQueen & Burnard, 1994), Hidden Markov Model (HMM) (Kupiec, 1992), COCOA annotation method (McEnery & Wilson, 1996), Dynamic Programming Method (DPM) (DeRose, 1988), and EAGLE annotation guideline (Sinclair, 1996), etc.…”
Section: What Is Corpus Annotation?mentioning
confidence: 99%
“…One learner corpus project for which English is not the target language is the Corpus of Taiwanese Learners' Corpus of Spanish, which contains data from Taiwanese speakers (L2: English, L3: Spanish) of different levels from 15 universities. The corpus is richly annotated for parts-of-speech, lemmas, and errors made by the learners, and made available in XML format [52].…”
Section: Learner Corporamentioning
confidence: 99%
“…En este ámbito, los corpus nos sirven para conocer la frecuencia de los elementos lingüísticos (por ejemplo, con qué frecuencia los aprendices usan ciertas palabras o estructuras) o responder dudas que no podemos resolver con nuestra propia intuición (por ejemplo, qué preposiciones suelen usar con ciertos verbos). Además de este uso pedagógico, para el que el corpus fue diseñado en un principio, los datos contenidos en él pueden ser de ayuda también en la investigación sobre el aprendizaje y la adquisición de lenguas extranjeras (en el análisis de errores, la lingüística corpus de reducido tamaño compilados para llevar a cabo investigaciones particulares, existen en este momento tres que pueden ser consultados libremente (CEDEL2 (Lozano, 2022); CAES (Palacios et al, 2019); y COWS-L2H (Yamada et al, 2020)), otros tres mediante registro (Aprescrilov (Buyse y González, 2013), CATE (Lu, 2010) y CORESPI (Bailini y Frigerio, 2019)) y uno mediante compra (CORANE (Cestero Mancera et al, 2001)).…”
Section: Introductionunclassified