Performance analysis of cloud computing services for many-tasks scientific computingIosup
Document VersionPublisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)Please check the document version of this publication:• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.• The final author version and the galley proof are versions of the publication after peer review.• The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication
General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.• You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ?
Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Abstract-Cloud computing is an emerging commercial infrastructure paradigm that promises to eliminate the need for maintaining expensive computing facilities by companies and institutes alike. Through the use of virtualization and resource time sharing, clouds serve with a single set of physical resources a large user base with different needs. Thus, clouds have the potential to provide to their owners the benefits of an economy of scale and, at the same time, become an alternative for scientists to clusters, grids, and parallel production environments. However, the current commercial clouds have been built to support web and small database workloads, which are very different from typical scientific computing workloads. Moreover, the use of virtualization and resource time sharing may introduce significant performance penalties for the demanding scientific computing workloads. In this work, we analyze the performance of cloud computing services for scientific computing workloads. We quantify the presence in real scientific computing workloads of Many-Task Computing (MTC) users, that is, of users who employ loosely coupled applications comprising many tasks to achieve their scientific goals. Then, we perform an empirical evaluation of the performance of four commercial cloud computing services including Amazon EC2, which is currently the largest commercial cloud. Last, we compare through tra...