Clean energy has become a growing concern, and many organizations pay attention to environmental protection and energy production as well. In the last few decades, the wind turbine has become the core of clean energy production and has advanced in generating electricity from 40 kW to 5 mW. However, the new design of the wind turbine causes several potential failures which frequently lead to the inability to accomplish the operational requirements intended to meet the customers’ expectations. As a solution to this problem, the present paper proposes a novel systematic approach that combines Multicriteria Decision-Making (MCDM) techniques and Failure Mode Effects and Criticality Analysis (FMECA) tool to reveal the fatal failures and optimize the maintenance actions. To further develop the preceding framework, this work will not only rely on the three risk factors that are involved in the traditional Risk Priority Numbers (RPN) approach but also will consider the economic aspect of the system. In the proposed approach, the grey Analytic Hierarchy Process (AHP) method is applied in the first place to calculate the weights of the four risk factors criteria. Second, the grey Multiattribute Border Approximation area Comparison (MABAC) technique is applied to rank the failure modes and their criticality on the whole system. The proposed model is verified within an organization of renewable energy production in Morocco. Furthermore, the results of the comparative and the sensitivity analysis affirm that the proposed research framework is adequate for enhancing other complex systems design, especially in a developing world where funds and resources are scarce.