Forming sheet metals under blast loading or the explosive forming technique has many advantages for productions, but it is restricted due to its accuracy. This paper introduces a novel theoretical-empirical study for explosive sheet metal forming based on the simple plasticity principles. It provides a method of producing the sheet metal cone parts forming under blast loading, including an analytical model and experimental validation. Firstly, a theoretical-empirical model for cone forming based on underwater explosion employing the impulse method is developed. The model on the whole revealed the relationships among the geometrical parameters of forming a process that is very useful to predict the certain explosive mass for complete forming a cone part. Afterward, a series of experiments are conducted to validate the developed model and also for the required modification in the solution. Comparing the theoretical-empirical solution and experimental results, the ability of the presented model for estimation of the explosive mass is demonstrated. Experimental results show that the theoretical model matched the experiments well.