Let
S
γ
,
A
,
B
∗
(
D
)
{S}_{\gamma ,A,B}^{\ast }\left({\mathbb{D}})
be the usual class of
g
g
-starlike functions of complex order
γ
\gamma
in the unit disk
D
=
{
ζ
∈
C
:
∣
ζ
∣
<
1
}
{\mathbb{D}}=\left\{\zeta \in {\mathbb{C}}:| \zeta | \lt 1\right\}
, where
g
(
ζ
)
=
(
1
+
A
ζ
)
∕
(
1
+
B
ζ
)
g\left(\zeta )=\left(1+A\zeta )/\left(1+B\zeta )
, with
γ
∈
C
\
{
0
}
,
−
1
≤
A
<
B
≤
1
,
ζ
∈
D
\gamma \left\in {\mathbb{C}}\backslash \left\{0\right\}\right,-1\le A\lt B\le 1,\zeta \in {\mathbb{D}}
. First, we obtain the bounds of all the coefficients of homogeneous expansions for the functions
f
∈
S
γ
,
A
,
B
∗
(
D
)
f\in {S}_{\gamma ,A,B}^{\ast }\left({\mathbb{D}})
when
ζ
=
0
\zeta =0
is a zero of order
k
+
1
k+1
of
f
(
ζ
)
−
ζ
f\left(\zeta )-\zeta
. Second, we generalize this result to several complex variables by considering the corresponding biholomorphic mappings defined in a bounded complete Reinhardt domain. These main theorems unify and extend many known results.