Applying medial limits we describe bounded solutions $$\varphi :S\rightarrow {\mathbb {R}}$$
φ
:
S
→
R
of the functional equation $$\begin{aligned} \varphi (x)=\int _{\Omega }g(\omega )\varphi (f(x,\omega ))d\mu (\omega )+G(x), \end{aligned}$$
φ
(
x
)
=
∫
Ω
g
(
ω
)
φ
(
f
(
x
,
ω
)
)
d
μ
(
ω
)
+
G
(
x
)
,
where $$(\Omega ,{\mathcal {A}},\mu )$$
(
Ω
,
A
,
μ
)
is a measure space, $$S\subset \mathbb R$$
S
⊂
R
, $$f:S\times \Omega \rightarrow S$$
f
:
S
×
Ω
→
S
, $$g:\Omega \rightarrow {\mathbb {R}}$$
g
:
Ω
→
R
is integrable and $$G:S\rightarrow {\mathbb {R}}$$
G
:
S
→
R
is bounded. The main purpose of this paper is to extend results obtained in Morawiec (Results Math 75(3):102, 2020) to the above general functional equation in wider classes of functions and under weaker assumptions.