In prior technology, system-level electrostatic discharge (ESD) tests under environment change conditions mainly focused on testing the effect of a high-temperature environment. i.e., the effect on internal circuits of heat generated outside. However, few studies have explored the effect of ambient relative humidity changes on integrated circuits (ICs). Therefore, this study will analyze the performance of various ESD protection components under high ambient temperature and high ambient relative humidity. The ESD protection devices are tested for the ESD robustness of the silicon-controlled rectifiers (SCR) under a harsh environment and the measurement results are discussed and verified in the CMOS process.