Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Delays in legal proceedings significantly impact both corporate finances and individual livelihoods. Traditional methods for managing these delays typically rely on subjective assessments of what constitutes a reasonable process duration. This study explores a more precise approach by integrating machine learning and process mining techniques to enhance prediction of legal proceedings’ overall time. Diverging from previous works that either utilized machine learning analysis or process mining in isolation, this research synergizes these approaches. We applied process mining clustering techniques to over 60,000 cases from Brazilian labor courts to segment cases based on their procedural movements, creating clusters. These clusters, along with other procedural characteristics, such as case subject, class, and digital status, were then incorporated into a feature set for regression modelling. We employed linear regression, support vector regressor, and gradient boosting based methods to develop models that predicted case duration. The gradient boosting model demonstrated the best performance with an $$R^2$$ R 2 -score of 0.87. Furthermore, our analysis identifies time bands where the model performs better and employs explainable AI techniques to elucidate key features influencing case durations. The clustering features emerged among the most significant for the task. The proposed combined approach offers a comprehensive method for analyzing and forecasting legal case timelines and also shows the potential of process mining clustering techniques to improve the analysis.
Delays in legal proceedings significantly impact both corporate finances and individual livelihoods. Traditional methods for managing these delays typically rely on subjective assessments of what constitutes a reasonable process duration. This study explores a more precise approach by integrating machine learning and process mining techniques to enhance prediction of legal proceedings’ overall time. Diverging from previous works that either utilized machine learning analysis or process mining in isolation, this research synergizes these approaches. We applied process mining clustering techniques to over 60,000 cases from Brazilian labor courts to segment cases based on their procedural movements, creating clusters. These clusters, along with other procedural characteristics, such as case subject, class, and digital status, were then incorporated into a feature set for regression modelling. We employed linear regression, support vector regressor, and gradient boosting based methods to develop models that predicted case duration. The gradient boosting model demonstrated the best performance with an $$R^2$$ R 2 -score of 0.87. Furthermore, our analysis identifies time bands where the model performs better and employs explainable AI techniques to elucidate key features influencing case durations. The clustering features emerged among the most significant for the task. The proposed combined approach offers a comprehensive method for analyzing and forecasting legal case timelines and also shows the potential of process mining clustering techniques to improve the analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.