We address the problem of surface inpainting, which aims to fill in holes or missing regions on a Riemann surface based on its surface geometry. In practical situation, surfaces obtained from range scanners often have holes or missing regions where the 3D models are incomplete. In order to analyze the 3D shapes effectively, restoring the incomplete shape by filling in the surface holes is necessary. In this paper, we propose a novel conformal approach to inpaint surface holes on a Riemann surface based on its surface geometry. The basic idea is to represent the Riemann surface using its conformal factor and mean curvature. According to Riemann surface theory, a Riemann surface can be uniquely determined by its conformal factor and mean curvature up to a rigid motion. Given a Riemann surface S, its mean curvature H and conformal factor λ can be computed easily through its conformal parameterization. Conversely, given λ and H, a Riemann surface can be uniquely reconstructed by solving the Gauss-Codazzi equation on the conformal parameter domain. Hence, the conformal factor and the mean curvature are two geometric quantities fully describing the surface. With this λ-H representation of the surface, the problem of surface inpainting can be reduced to the problem of image inpainting of λ and H on the conformal parameter domain. The inpainting of λ and H can be done by conventional image inpainting models. Once λ and H are inpainted, a Riemann surface can be reconstructed which effectively restores the 3D surface with missing holes. Since the inpainting model is based on the geometric quantities λ and H, the restored surface follows the surface geometric pattern as much as possible. We test the proposed algorithm on synthetic data, 3D human face data and MRI-derived brain surfaces. Experimental results show that our proposed method is an effective surface inpainting algorithm to fill in surface holes on an incomplete 3D models based their surface geometry.