2021
DOI: 10.1109/access.2021.3095480
|View full text |Cite
|
Sign up to set email alerts
|

An Approach to Detecting Malicious Information Attacks for Platoon Safety

Abstract: Malicious attacks reduce the benefits of cooperative adaptive cruise control (CACC) such as safety, driving convenience, traffic flow, and fuel efficiency, by destabilizing the stability. To reinforce the resiliency of a CACC based platoon of connected and automated vehicles (CAVs), this work investigates a detection method for malicious information attacks in the platoon. In this work, we propose an attack detection method, called LMID (long short-term memory (LSTM) based malicious information detection). We … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 7 publications
(2 citation statements)
references
References 37 publications
0
1
0
1
Order By: Relevance
“…Este framework emprega os conceitos de Teoria dos Jogos e de equilíbrio de Nash na reconfigurac ¸ão do sistema de controle do veículo para mitigar o ataque de rede. Em [Ko and Son 2021], um método de detecc ¸ão de ataque denominado LMID (Long short-term memory (LSTM) based Malicious Information Detection baseia-se nas informac ¸ões maliciosas transmitidas na rede provenientes dos veículos membros do próprio pelotão. Para a detecc ¸ão, eles definiram ataques correlacionados e não-correlacionados e treinaram um modelo de rede neural profunda utilizado em cada veículo no teste.…”
Section: Trabalhos Relacionadosunclassified
“…Este framework emprega os conceitos de Teoria dos Jogos e de equilíbrio de Nash na reconfigurac ¸ão do sistema de controle do veículo para mitigar o ataque de rede. Em [Ko and Son 2021], um método de detecc ¸ão de ataque denominado LMID (Long short-term memory (LSTM) based Malicious Information Detection baseia-se nas informac ¸ões maliciosas transmitidas na rede provenientes dos veículos membros do próprio pelotão. Para a detecc ¸ão, eles definiram ataques correlacionados e não-correlacionados e treinaram um modelo de rede neural profunda utilizado em cada veículo no teste.…”
Section: Trabalhos Relacionadosunclassified
“…However, the complex integration of multi-modal physical sensing, computation, and communication creates a particularly challenging environment to safeguard. The safety of the platoon relies on the veracity of the V2V messages exchanged between platoon members, as falsified messages about acceleration, location, and velocity can lead to life-threatening accidents, damage to high-value cargo, and monetary loss [22], [49]. The key security questions for a platooning application are: (a) who is authorized to participate in the platoon and how is the identity of the platoon members verified?…”
Section: Introductionmentioning
confidence: 99%