“…Therefore, the LST is a key parameter for the physical description of the surface energy and water balance processes at the local to global scale [1,2]. The potential of this crucial parameter has been repeatedly demonstrated in various thermal infrared-based studies and applications, such as evapotranspiration [3,4], hydrological modelling [5], vegetation monitoring [6], 'urban heat island and urban development' [7][8][9], climate change and weather conditions [1,10], agriculture [3,11], and the monitoring of land use changes in wetlands [12]. In agricultural applications, precision farming has increasingly required thermal remote sensing techniques to detect water-stressed crops [3,13,14], plant diseases [13,15], and for irrigation management [13,14].…”