Opium poppy (Papaver somniferum L.) is one of the ancient medical crops, which produces several important alkaloids such as morphine, noscapine, sanguinarine and codeine. MicroRNAs are endogenous non-coding RNAs that play important regulatory roles in plant diverse biological processes. Many plant miRNAs are encoded as single transcriptional units, in contrast to animal miRNAs, which are often clustered. Herein, using computational approaches, a total of 22 miRNA precursors were identified, which five of them were located as a clustered in pre-ribosomal RNA. Afterward, the transcript level of the precursor and the mature of clustered miRNAs in two species of the Papaveraceae family, i.e. P. somniferum L. and P. bracteatum L, were quantified by RT-PCR. With respect to obtained results, these clustered miRNAs were expressed differentially in different tissues of these species. Moreover, using target prediction and Gene Ontology (GO)-based on functional classification indicated that these miRNAs might play crucial roles in various biological processes as well as metabolic pathways. In this study, we discovered the clustered miRNA derived from pre-rRNA, which may shed some light on the importance of miRNAs in the plant kingdom.