The objective of this study was to investigate the accuracy of a wearable photoplethysmography (PPG) sensor in monitoring heart rate (HR) of sheep housed in high-temperature environments. We hypothesized that the PPG sensor would be capable of differentiating low, normal, and high HR, but would struggle to produce exact HR estimates. The sensor was open source and comprised of a microprocessor (SparkFun® ThingPlus), a photoplethysmography sensor (SparkFun® MAX30101 & MAX32664), and a data storage module (SD Card 16GB), all sewn into a nylon collar with hook-and-loop closure. Sheep (n=4) were divided into 2 groups and exposed to different thermal environments in a cross-over design. The collar was placed around the neck of the sheep during the data collection phase and the manual HR were collected twice a day using a stethoscope. Precision and accuracy of numeric heart rate estimates were analyzed in R software using Pearson correlation and root mean squared prediction errors. Random forest regression was used to classify HR based on low, medium, and high to determine opportunities to leverage the PPG sensors for HR classification. Sensitivity, specificity, and accuracy were measured to evaluate the classification approach. Our results indicated that the PPG-based sensor measured sheep HR with poor accuracy and with higher average estimates in comparison with manually measured with a stethoscope. Categorical classification of HR was also poor, with accuracies ranging from 32% to 49%. Additional work is needed focusing on data analytics, and signal optimization to further rely on PPG sensors for accurately measuring HR in sheep.