In this paper we present a family of Non-Uniform Local Interpolatory (NULI) subdivision schemes, derived from compactly supported interpolatory fundamental splines with non-uniform knots (NULIFS). For this spline family, the knot-partition is defined by a sequence of break points and by one additional knot, arbitrarily placed along each knot-interval. The resulting refinement algorithms are linear and turn out to contain a set of edge parameters that, when fixed to a value in the range [0,1], allow us to achieve special shape features by simply moving each auxiliary knot between the break points. Among all the members of this new family of schemes, we will then especially analyze the NULI 4-point refinement. This subdivision scheme has all the fundamental features of the quadratic fundamental spline basis it is originated from, namely compact support, C 1 smoothness, second order polynomials reproduction and approximation order 3. In addition the NULI 4-point subdivision algorithm has the possibility of setting consecutive edge parameters to simulate double and triple knots -that are not considered by the authors of the corresponding spline basis -thus allowing for limit curves with crease vertices, without using an ad hoc mask. Numerical examples and comparisons with other methods will be given to the aim of illustrating the performance of the NULI 4-point scheme in the case of highly non-uniform initial data.