In plants, CG DNA methylation is prevalent in the transcribed regions of many constitutively expressed genes (gene body methylation; gbM), but the origin and function of gbM remain unknown. Here we report the discovery that Eutrema salsugineum has lost gbM from its genome, to our knowledge the first instance for an angiosperm. Of all known DNA methyltransferases, only CHROMOMETHYLASE 3 (CMT3) is missing from E. salsugineum. Identification of an additional angiosperm, Conringia planisiliqua, which independently lost CMT3 and gbM, supports that CMT3 is required for the establishment of gbM. Detailed analyses of gene expression, the histone variant H2A.Z, and various histone modifications in E. salsugineum and in Arabidopsis thaliana epigenetic recombinant inbred lines found no evidence in support of any role for gbM in regulating transcription or affecting the composition and modification of chromatin over evolutionary timescales.DNA methylation | gene body methylation | epigenetics | histone modifications | CHROMOMETHYLASE 3 I n angiosperms, cytosine DNA methylation occurs in three sequence contexts: Methylated CG (mCG) is catalyzed by METHYLTRANSFERASE 1 (MET1), mCHG (where H is A/C/T) by CHROMOMETHYLASE 3 (CMT3), and mCHH by DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2) or CHROMOMETHYLASE 2 (CMT2) (1). MET1 performs a maintenance function and is targeted by VARIANT IN METHYLATION 1 (VIM1), which binds preexisting hemimethylated CG sites. In contrast, DRM2 is targeted by RNA-directed DNA methylation (RdDM) for the de novo establishment of mCHH. CMT3 forms a self-reinforcing loop with the H3K9me2 pathway to maintain mCHG; however, considering that transformation of CMT3 into the cmt3 background can rescue DNA methylation defects, it is reasonable to also consider CMT3 a de novo methyltransferase (2). Two main lines of evidence suggest that DNA methylation plays an important role in the transcriptional silencing of transposable elements (TEs): that TEs are usually methylated, and that the loss of DNA methylation (e.g., in methyltransferase mutants) is often accompanied by TE reactivation.A large number of plant genes (e.g., ∼13.5% of all Arabidopsis thaliana genes) also contain exclusively mCG in the transcribed region and a depletion of mCG from both the transcriptional start and stop sites (referred to as "gene body DNA methylation"; gbM) ( Fig. 1A) (3)(4)(5). A survey of plant methylome data showed that the emergence of gbM in the plant kingdom is specific to angiosperms (6), whereas nonflowering plants (such as mosses and green algae) have much more diverse genic methylation patterns (7,8). Similar to mCG at TEs, the maintenance of gbM requires MET1. In contrast to DNA methylation at TEs, however, gbM does not appear to be associated with transcriptional repression. Rather, genes containing gbM are ubiquitously expressed at moderate to high levels compared with non-gbM genes (4, 5, 9), and within gbM genes there is a correlation between transcript abundance and methylation levels (10, 11).It has been proposed ...