We develop an availability solution, called SafetyNet, that uses a unified, lightweight checkpoint/recovery mechanism to support multiple long-latency fault detection schemes. At an abstract level, SafetyNet logically maintains multiple, globally consistent checkpoints of the state of a shared memory multiprocessor (i.e., processors, memory, and coherence permissions), and it recovers to a pre-fault checkpoint of the system and re-executes if a fault is detected. SafetyNet efficiently coordinates checkpoints across the system in logical time and uses "logically atomic" coherence transactions to free checkpoints of transient coherence state. SafetyNet minimizes performance overhead by pipelining checkpoint validation with subsequent parallel execution.We illustrate SafetyNet avoiding system crashes due to either dropped coherence messages or the loss of an interconnection network switch (and its buffered messages). Using full-system simulation of a 16-way multiprocessor running commercial workloads, we find that SafetyNet (a) adds statistically insignificant runtime overhead in the common-case of fault-free execution, and (b) avoids a crash when tolerated faults occur. Architecture, 2002, May 2002 This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.
Comments
Copyright 2002 IEEE. Reprinted from Proceedings of the 29th Annual International Symposium on Computer