In micro- and nanofluidic devices, liquid flows are often influenced by ionic currents generated by electric fields in narrow channels, which is an electrokinetic phenomenon. Various technologies have been developed that are analogous to semiconductor devices, such as diodes and field effect transistors. On the other hand, measurement techniques for local electric fields in such narrow channels have not yet been established. In the present study, electric fields in liquids are locally measured using glass micro-electrodes with 1-μm diameter tips, which are constructed by pulling a glass tube. By scanning a liquid poured into a channel by glass micro-electrodes, the potential difference in a liquid can be determined with a spatial resolution of the size of the glass tip. As a result, the electrical conductivity of sample solutions can be quantitatively evaluated. Furthermore, combining two glass capillaries filled with buffer solutions of different concentrations, an ionic diode that rectifies the proton conduction direction is constructed, and the possibility of pH measurement is also demonstrated. Under constant-current conditions, pH values ranging from 1.68 to 9.18 can be determined more quickly and stably than with conventional methods that depend on the proton selectivity of glass electrodes under equilibrium conditions.