1996
DOI: 10.1109/61.544265
|View full text |Cite
|
Sign up to set email alerts
|

An artificial neural network approach to transformer fault diagnosis

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
57
0
4

Year Published

2007
2007
2017
2017

Publication Types

Select...
8
2

Relationship

0
10

Authors

Journals

citations
Cited by 301 publications
(61 citation statements)
references
References 3 publications
0
57
0
4
Order By: Relevance
“…The application of ANN makes possible to reduce considerably the laboratory experiment time while networks learn how to predict properties of insulation for duration longer than those of the tests thus constituting a tool making more economic the tests of high voltage in general. ANN method is more accurately applied to Dissolved Gas Analysis since the hidden relationships between fault types and dissolved gases can be recognized by ANN through training process [12][13][14][15].…”
Section: Artificial Neural Network Application To Dgamentioning
confidence: 99%
“…The application of ANN makes possible to reduce considerably the laboratory experiment time while networks learn how to predict properties of insulation for duration longer than those of the tests thus constituting a tool making more economic the tests of high voltage in general. ANN method is more accurately applied to Dissolved Gas Analysis since the hidden relationships between fault types and dissolved gases can be recognized by ANN through training process [12][13][14][15].…”
Section: Artificial Neural Network Application To Dgamentioning
confidence: 99%
“…Collected vibration features can be integrated into a neural network that can represent the complicated nonlinear relationship mapping from the vibration features to the mechanical faults [1]. Moreover, the neural network is robust to noise 0.…”
Section: Introductionmentioning
confidence: 99%
“…A la fecha, los estudios de confiabilidad en los transformadores a nivel mundial se han centrado en temas puntuales como el análisis de gas disuelto en transformadores Wang(2012), (Pereira, 2012a), (Zhan, Member, Goulart, Falahi, & Rondla, 2015), entrenamiento de herramientas como redes neuronales Zhang(1996), (Kuznetsova, Li, Ruiz, & Zio, 2014), sistemas expertos con información limitada del comportamiento ciertos transformadores (Lin, Ling, & Huang, 1993), identificación variables de mantenimiento mediante lógica difusa (Arshad, Islam, & Khaliq, 2014), minería de datos para calidad de eventos (M. Guder 2014), falla de transformadores y métodos estadísticos (Soto, 2015), (Youssef, 2003), (Mkandawire, Ijumba, & Saha, 2015), (Mago, Valles, & Olaya, 2012), (Georgilakis & Kagiannas, 2014), (Ridwan & Talib, 2014), (Zompakis, Bartzas, & Soudris, 2015), (Zompakis et al, 2015), (Henao, Amaya, & Jaramillo, 2014), entre otros. La siguiente figura permite dimensionar el estudio de transformadores utilizando herramientas que permitan analizar grandes volúmenes de datos y alguna técnica inteligente para este fin.…”
Section: Introductionunclassified