We investigate the effect of systematically applying molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) to docked poses in an attempt to improve the correspondence between theoretical prediction and experimental observation. The proposed scheme involves running a short time scale MD simulation on a docked ligand pose (and any known structurally important crystal structure waters in the active site), followed by QM/MM minimization. Both of these steps are relatively fast for moderately sized ligands; longer time scale MD involving the protein is not found to improve the results. The final binding energy is given in terms of the QM/MM total energy, a van der Waals correction, and a term to account for desolvation effects. This methodology is first tested with a trypsin inhibitor, for which we establish the importance of running MD before reoptimizing with QM/MM. The method is then applied to cytochrome c peroxidase using a set of binders and decoys. In this example, the proposed methodology affords much better discrimination between binders and decoys than the traditional docking approach used. For both systems presented, application of this protocol results in a significantly better energetic ranking and a smaller root mean squared deviation from known crystallographic ligand poses. This work highlights the importance of including polarization effects through QM/MM and of sampling with MD to refine a set of initial docked poses.