Radiation-related extracranial vasculopathy is a common late effect after radiation in patients with nasopharyngeal carcinoma (NPC). We proposed the hypothesis that radiation-related extracranial vasculopathy is a progressive process that can begin immediately after radiotherapy and persist for a longer period, and inflammation and oxidative stress may play a pivotal role in this process. Thirty-six newly diagnosed NPC patients were assessed with B-mode ultrasound for the common carotid artery (CCA) intima media thickness (IMT) measurement as well as surrogate markers at three different stages (baseline, immediately after concurrent chemoradiation therapy (CCRT), and 9 years after enrollment). A healthy control group was also recruited for comparison. Surrogate markers including a lipid profile, HbA1c, inflammation, oxidative stress, and platelet activation markers were assessed. The mean CCA IMT in the NPC group were increased immediately after CCRT (p = 0.043). The mean CCA IMT value after a 9-year follow-up also showed a significant increase in NPC and control group, respectively (p < 0.0001 and p < 0.0001, paired t test). The annual increase mean CCA IMT (mm) was 0.053 ± 0.025 and 0.014 ± 0.013 in NPC and control group, respectively (p < 0.0001). The baseline high sensitivity CRP (hs-CRP), thiol, TBARS, and CD63 level were significantly higher in the NPC group (hs-CRP, p = 0.001, thiol, p < 0.0001, TBARS, p = 0.05, and CD63 level, p = 0.04). The thiol and TBARS levels were significantly lower in NPC patients immediately after CCRT (thiol, p < 0.0001, and TBARS, p = 0.043). The CD62P level was significantly higher while the thiol level was significantly lower in the NPC group after a 9-year follow-up (CD62P level, p = 0.007; and thiol level, p = 0.004). Radiation-related extracranial vasculopathy is a progressive process that begins immediately after radiotherapy with significantly increased carotid IMT compared to the control group during the 9-year follow-up. Chronic inflammation and oxidative stress might serve to drive the process and also contribute to increased platelet activation.