We have detected micrometer-scale differences in Fe and Si stable isotope ratios between coexisting minerals and between layers of banded iron formation (BIF) using an UV femtosecond laser ablation system connected to a MC-ICP-MS. In the magnetite-carbonate-chert BIF from the Archean Old Wanderer Formation in the Shurugwi Greenstone Belt (Zimbabwe), magnetite shows neither intra-nor inter-layer trends giving overall uniform 56 Fe values of ~0.9‰, but exhibits intra-crystal zonation. Bulk iron carbonates are also relatively uniform at near-zero values, however their individual 56 Fe value is highly composition-dependent: both siderite and ankerite and mixtures between both are present, and 56 Fe end member values are 0.4‰ for siderite and -0.7‰ for ankerite. The data suggest either an early diagenetic origin of magnetite and iron carbonates by the reaction of organic matter with ferric oxyhydroxides catalysed by Fe(III)-reducing bacteria; or more likely an abiotic reaction of organic carbon and Fe(III) during low-grade metamorphism. Si isotope composition of the Old Wanderer BIF also shows significant variations with 30 Si values that range between -1.0 and -2.6‰ for bulk layers. These isotope compositions suggest rapid precipitation of the silicate phases from hydrothermal-rich waters. Interestingly, Fe and Si isotope compositions of bulk layers are covariant and are interpreted as largely primary signatures. Moreover, the changes of Fe and Si isotope signatures between bulk layers directly reflect the upwelling dynamics of hydrothermal-rich water which govern the rates of Fe and Si precipitation and therefore also the development of layering. During periods of low hydrothermal activity, precipitation of only small amounts of ferric oxyhydroxide was followed by complete reduction with organic carbon during diagenesis resulting in carbonate-chert layers. During periods of intensive hydrothermal activity, precipitation rates of ferric oxyhydroxide were high, and subsequent diagenesis triggered only partial reduction, forming magnetite-carbonate-chert layers. We are confident that our micro-analytical technique is able to detect both the solute flux history into the sedimentary BIF precursor, and the BIF's diagenetic history from the comparison between coexisting minerals and their predicted fractionation factors.