“…) Binary logistic regression (BLR) Atkinson and Massari (1998), Ayalew and Yamagishi (2005), Bai et al (2010), Can et al (2005), Carrara et al (2008), Chauan et al (2010), Conforti et al (2012), Dai and Lee (2002), Davis and Ohlmacher (2002), Erener and Düzgün (2010), Mathew et al (2009), Nandi and Shakoor (2009), Nefeslioglu et al (2008, Ohlmacher and Davis (2003), Van den Eckhaut et al (2006 Classification and regression trees (CART) Felicísimo et al (2012), Vorpahl et al (2012) Artificial neuronal networks (ANN) Aleotti and Chowdhury (1999), Ermini et al (2005), Lee et al (2004), Pradhan and Lee (2010) Original Paper exploited to compare the fitting of the model having only the constant term (all the β p are set to 0) with the fitting of the model that includes all the considered predictors with their estimated non-null coefficients so as to verify if the increase in likelihood is significant; in this case, at least one of the p coefficients is to be expected as different from zero (Hosmer and Lemeshow 2000). By exponentiating the β's, odds ratios (OR) for the independent variables are derived: these are measures of association between the independent variables and the outcome of the dependent, and directly express how much more likely (or unlikely) it is for the outcome to be positive (unstable cell) for unit changing of the considered independent variable.…”