Beta-carotene dye which is extracted from daucus carota material was used as sensitizer to fabricate dye-sensitized solar cell (DSSC). DSSCs were arranged in a sandwich structure consisting of fluorine-doped tin oxide (FTO) as a transparent conducting oxide (TCO), titanium dioxide (TiO2) layer, beta-carotene dye, iodide/tri-iodide redox electrolyte, and carbon layer as a counter electrode. Beta-carotene dye has an absorbance in wavelength zones from 415 to 508 nm. Meanwhile, it has the largest photoconductivity of 28.3×10-4 and 8.2×10-4(Ω.m)-1 in dark and bright conditions, respectively. Moreover, the photoelectrochemical performance of the DSSC based on beta-carotene dye showed that the maximum voltage of 23.9×10-2V and the maximum current of 3.3×10-5A. However, the photo-to-electric conversion efficiency of this DSSC was very low i.e. 12.5×10-4%.