This paper considers methods to extract exact, explicit, and new single soliton solutions related to the nonlinear Klein-Gordon-Schrödinger model that is utilized in the study of neutral scalar mesons associated with conserved scalar nucleons coupled through the Yukawa interaction. Three state of the art integration schemes, namely, the e−Φ(ξ)-expansion method, Kudryashov's method, and the tanh-coth expansion method are employed to extract bright soliton, dark soliton, periodic soliton, combo soliton, kink soliton, and singular soliton solutions. All the constructed solutions satisfy their existence criteria. It is shown that these methods are concise, straightforward, promising, and reliable mathematical tools to untangle the physical features of mathematical physics equations.