Urban trees are vital elements of outdoor scenes via mobile laser scanning (MLS), accurate individual trees detection from disordered, discrete, and high-density MLS is an important basis for the subsequent analysis of city management and planning. However, trees cannot be easily extracted because of the occlusion with other objects in urban scenes. In this work, we propose a coarse-to-fine individual trees detection method from MLS point cloud data (PCD) based on treetop points extraction and radius expansion. Firstly, an improved semantic segmentation deep network based on PointNet is applied to segment tree points from the scanned urban scene, which combining spatial features and dimensional features. Next, through calculating the local maximum, the candidate treetop points are located. In addition, the optimized treetop points are extracted after the tree point projection plane was filtered to locate the candidate treetop points, and a distance rule is used to eliminate the pseudo treetop points then the optimized treetop points are obtained. Finally, after the initial clustering of treetop points and vertical layering of tree points, a top-down layer-by-layer segmentation based on radius expansion to realize the complete individual extraction of trees. The effectiveness of the proposed method is tested and evaluated on five street scenes in point clouds from Oakland outdoor MLS dataset. Furthermore, the proposed method is compared with two existing individual trees segmentation methods. Overall, the precision, recall, and F-score of instance segmentation are 98.33%, 98.33%, and 98.33%, respectively. The results indicate that our method can extract individual trees effectively and robustly in different complex environments.