The analysis of aircraft design methods reported here has revealed that building a competitive aircraft necessitates devising a scientifically based concept of integrated aircraft design employing CAD/CAM/CAE/PLM software suites.
A generalized concept of integrated design and three-dimensional computer modeling of aircraft involving the CAD/CAM/CAE/PLM systems has been developed. Based on the proposed concept, the principles of integrated design of aircraft were devised. The features of designing the training and training-combat aircraft, transport-category aircraft, light civilian aircraft have been described.
A method for determining the take-off weight, design parameters, and formation of the general appearance of aircraft has been improved. The method is intended to form the appearance of the aircraft at the stages of preliminary design, the purpose of which is reduced to determining the permissible version of the aircraft project. The project must meet the predefined requirements and restrictions in the selected aircraft scheme and the assigned set of parameters that characterize its airframe and power plant.
A method of parametric modeling of aircraft has been improved, which includes the stages of creating a master geometry of the aircraft and a model of space distribution. Parametric models of master geometry and models of space distribution, training and training-combat aircraft, transport-category aircraft, light civilian aircraft have been constructed.
Methods of integrated design of aircraft main units have been devised and theoretically substantiated. Parametric models of master geometry of the wing for a training aircraft, the wings, appendage, and fuselage of a light civilian aircraft were built, taking into consideration the design features of aircraft units of various categories