2019 Twelfth International Conference on Contemporary Computing (IC3) 2019
DOI: 10.1109/ic3.2019.8844942
|View full text |Cite
|
Sign up to set email alerts
|

An Automated Computer Vision Based System for Bottle Cap Fitting Inspection

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
2
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
4
4

Relationship

0
8

Authors

Journals

citations
Cited by 15 publications
(3 citation statements)
references
References 6 publications
0
2
0
1
Order By: Relevance
“…Pentingnya mendeteksi kesalahan yang terjadi sesegera mungkin. Penelitian ini membahsa sistem otomatis dimana cacat pada tutup botol dapat diidentifikasi menggunakan teknologi computer vision (Kulkarni, dkk, 2019). Semakin berkembangnya teknologi AI, otomatisasi dalam aktifitas kehidupan menjadi semakin maju salah satunya menggunakan teknologi computer vision (Song, 2020).…”
Section: Pendahuluanunclassified
“…Pentingnya mendeteksi kesalahan yang terjadi sesegera mungkin. Penelitian ini membahsa sistem otomatis dimana cacat pada tutup botol dapat diidentifikasi menggunakan teknologi computer vision (Kulkarni, dkk, 2019). Semakin berkembangnya teknologi AI, otomatisasi dalam aktifitas kehidupan menjadi semakin maju salah satunya menggunakan teknologi computer vision (Song, 2020).…”
Section: Pendahuluanunclassified
“…The central server receives the image information transmitted from the edge and executes the appropriate algorithm to distinguish the qualified and defective products and detect the positive or negative sides of the bottle caps. Then, the server sends the instructions to the actuators near the production line, and the actuators complete the operations such as turning over the caps or rejecting the unqualified defective products according to the instructions [21,22].…”
Section: Introductionmentioning
confidence: 99%
“…This paper uses computer vision techniques which are used wildly to auto arrange tasks for varsity applications such as component identification, inspection, quality control and license plate recognition. (Cardona, 2016) (Kulkarni et al, 2019) (Ugwu et al, 2022) as well as, using for optical character recognition (OCR) and pattern recognition. (Barik & Mondal, 2010) There are several approaches have been used of computer vision to detect Multiple Choice Question MCQ answer, Abbas proposed 15 questions with answer sheet must not be rotated by 45 degrees and use rectangle for options , as he claimed some of student has a difficult to black answer (Abbas, 2009), Chinnasarn and Rangsanseri are used a histogram technique to detect answer by checking four options, then the highest black pixel on the answer is considered to be selected answer (Chinnasarn & Rangsanseri, 1999), Yimyam and Ketcham use mobile device to capture answer sheet and can obtain result of accuracy 96 (Yimyam & Ketcham, 2018), Spadaccini and Rizzo use existing framework from python library named Gamera framwork to analyze scanned document with cross over answer and he can obtain over 99% on recognition (Spadaccini & Rizzo, 2011).…”
Section: Introductionmentioning
confidence: 99%