Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In the context of urban space constraints, subway and underground projects have become crucial strategies to alleviate urban congestion and enhance residents’ quality of life. However, pit engineering, a frequent accident area in geotechnical engineering, urgently requires innovative safety monitoring technologies. Traditional monitoring methods face challenges such as high labor costs, lengthy monitoring cycles, high-risk working environments, and over-reliance on human judgment. To address these issues, this paper introduces an innovative monitoring system integrating Fiber Bragg Grating (FBG) sensing technology based on a subway pit project in Guangzhou. This system not only achieves fully automated data acquisition but also includes an intelligent monitoring cloud platform, providing unprecedented automated and intelligent monitoring solutions for support structures and the surrounding environment during mechanical shaft construction. The key findings of this paper include the following: (1) The breakthrough application of distributed optical fiber monitoring technology, including successfully deploying this advanced technology in complex pit engineering environments, enabling the precise and continuous monitoring of support structures and surrounding changes, and demonstrating its high effectiveness and intelligence in practical engineering. (2) The innovative design of an intelligent safety monitoring system. By integrating sensors and wireless communication technology, an efficient data networking architecture is constructed, supporting remote configuration and flexible adjustment of monitoring equipment, significantly enhancing data collection‘s real-time performance and continuity while greatly reducing safety risks for field staff, achieving an intelligent upgrade of monitoring work. (3) Comprehensive and accurate empirical analysis. During shaft excavation, the monitoring data collected by the system were stable and reliable, with all indicators maintained within reasonable ranges and closely matching expected changes caused by construction activities, validating the system’s practical application effectiveness in complex construction environments and providing a scientific basis for pit engineering safety management.
In the context of urban space constraints, subway and underground projects have become crucial strategies to alleviate urban congestion and enhance residents’ quality of life. However, pit engineering, a frequent accident area in geotechnical engineering, urgently requires innovative safety monitoring technologies. Traditional monitoring methods face challenges such as high labor costs, lengthy monitoring cycles, high-risk working environments, and over-reliance on human judgment. To address these issues, this paper introduces an innovative monitoring system integrating Fiber Bragg Grating (FBG) sensing technology based on a subway pit project in Guangzhou. This system not only achieves fully automated data acquisition but also includes an intelligent monitoring cloud platform, providing unprecedented automated and intelligent monitoring solutions for support structures and the surrounding environment during mechanical shaft construction. The key findings of this paper include the following: (1) The breakthrough application of distributed optical fiber monitoring technology, including successfully deploying this advanced technology in complex pit engineering environments, enabling the precise and continuous monitoring of support structures and surrounding changes, and demonstrating its high effectiveness and intelligence in practical engineering. (2) The innovative design of an intelligent safety monitoring system. By integrating sensors and wireless communication technology, an efficient data networking architecture is constructed, supporting remote configuration and flexible adjustment of monitoring equipment, significantly enhancing data collection‘s real-time performance and continuity while greatly reducing safety risks for field staff, achieving an intelligent upgrade of monitoring work. (3) Comprehensive and accurate empirical analysis. During shaft excavation, the monitoring data collected by the system were stable and reliable, with all indicators maintained within reasonable ranges and closely matching expected changes caused by construction activities, validating the system’s practical application effectiveness in complex construction environments and providing a scientific basis for pit engineering safety management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.