We report that a low-calorie diet can lessen the severity of neurochemical deficits and motor dysfunction in a primate model of Parkinson's disease. Adult male rhesus monkeys were maintained for 6 months on a reduced-calorie diet [30% caloric restriction (CR)] or an ad libitum control diet after which they were subjected to treatment with a neurotoxin to produce a hemiparkinson condition. After neurotoxin treatment, CR monkeys exhibited significantly higher levels of locomotor activity compared with control monkeys as well as higher levels of dopamine (DA) and DA metabolites in the striatal region. Increased survival of DA neurons in the substantia nigra and improved manual dexterity were noted but did not reach statistical significance. Levels of glial cell linederived neurotrophic factor, which is known to promote the survival of DA neurons, were increased significantly in the caudate nucleus of CR monkeys, suggesting a role for glial cell line-derived neurotrophic factor in the anti-Parkinson's disease effect of the low-calorie diet.brain-derived neurotrophic factor ͉ cell death ͉ dopamine P arkinson's disease (PD) results from the dysfunction and degeneration of dopamine (DA) neurons in the substantia nigra (SN) and DA axon terminals, resulting in progressive motor dysfunction (1). The risk of PD increases with advancing age, suggesting that cellular and molecular changes that occur in the brain during normal aging may promote the degeneration of DA neurons. In this regard, increased oxidative stress and impaired energy metabolism and protein turnover occur in DA neurons during normal aging, and these changes are greatly exacerbated in PD (2, 3). Although a small number of cases of PD result from inherited genetic mutations in one of three genes, ␣-synuclein, Parkin, or DJ-1 (4), most cases are sporadic with an unknown environmental cause(s). Nevertheless, studies of genetic and neurotoxin-based animal models of PD point to the involvement of oxidative stress and impaired energy metabolism and protein turnover in the pathogenesis of PD (3-6). There is currently no established intervention to prevent, or decrease the risk of, PD.Most studies of humans have concluded that a decrease in the number of DA neurons in the SN occurs during normal aging, with PD being an acceleration of this process (7-9). However, some investigators have reported no age-related decline in the number of DA neurons (10). Studies in rhesus monkeys have been more consistent in reporting age-related decline in the number of tyrosine hydroxylase (TH)-positive SN neurons (11, 12). However, because some monkey studies have reported increased numbers of THpositive nigral neurons after treatment with neurotrophic factors, such as glial cell line-derived neurotrophic factor (GDNF), an age-related decline in expression of TH could be an alternative explanation to the results suggesting an age-related loss of nigral neurons (13).In a wide range of laboratory animals, caloric restriction (CR) has been shown to prolong lifespan, decrease the incid...