2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI) 2013
DOI: 10.1109/icacci.2013.6637456
|View full text |Cite
|
Sign up to set email alerts
|

An automated video surveillance system using Viewpoint Feature Histogram and CUDA-enabled GPUs

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
4
0
1

Year Published

2016
2016
2020
2020

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 7 publications
(5 citation statements)
references
References 6 publications
0
4
0
1
Order By: Relevance
“…With the growing capability of object detectors, modern video storage systems (i.e., automated surveillance system [4,9,17]) can identify the objects in each video frame accurately. Nevertheless, due to the performance mismatch between existing block-based storage systems and CNN-based object detection, the efficiency of storing and indexing video clips with specified object categories after CNN inference is degraded.…”
Section: Observationmentioning
confidence: 99%
“…With the growing capability of object detectors, modern video storage systems (i.e., automated surveillance system [4,9,17]) can identify the objects in each video frame accurately. Nevertheless, due to the performance mismatch between existing block-based storage systems and CNN-based object detection, the efficiency of storing and indexing video clips with specified object categories after CNN inference is degraded.…”
Section: Observationmentioning
confidence: 99%
“…Viewpoint Feature Histograms (VFH) descriptor is derived from FPFH and is mainly used in 3D object recognition and classification [16]. The VFH adds a viewpoint variance while retaining its invariance to scale, as shown in Figure 2 [20]. Thus VFH descriptor consists of two parts: a viewpoint direction component and surface shape component comprised of an extended FPFH [16].…”
Section: Description Of 3d Point Featuresmentioning
confidence: 99%
“…The two experiments showed that the VFH outperformed other 3D Shape Descriptors when used alone. Because VFH has high recognition performance and fast computational properties, it has been widely used for objects recognition and classification [16,[19][20][21]. In this paper, the VFH of the point cloud data affiliated with waveform features was calculated and employed for concealed cars extraction.…”
Section: Introductionmentioning
confidence: 99%
“…Entre las plataformas paralelas existentes destaca la Arquitectura Unificada de Dispositivos de Cómputo (CUDA) (Saxena, Sharma and Sharma, 2014), (Vokorokos et al, 2014), la cual permite acelerar aplicaciones de cómputo, aprovechando el poder de las GPU´s (NVIDIA, no date). Recientemente se ha incrementado el uso de la plataforma CUDA (Pawar, 2017), Sin embargo, solo se detallan revisiones del estado del arte llevadas a cabo para acelerar la velocidad de procesamiento digital de imágenes (PDI) en ciertas aplicaciones como la médica (Weinlich et al, 2013) (Jiansen Li et al, 2014) (Lee et al, 2013) y no cubre las diferentes aplicaciones de procesamiento de video utilizando GPU en video vigilancia (Jha and Trivedi, 2013), (Devani, Nikam and Meshram, 2015), (Deligiannidis and Arabnia, 2014), procesamiento de imágenes de Radar de Apertura Sintética (SAR) (Fatica and Phillips, 2014), mejora de súper resolución de imágenes (Feng, Zhang and Gao, 2015), reconocimiento de objetos utilizando descriptor de Fourier (Haythem et al, 2014), criptografía, seguimiento de objetos, reducción de ruido (Yazdanpanah et al, 2014), reconstrucción de imágenes (Zhu et al, 2013) (Kau and Chen, 2013) (Heidari, 2013), detección de rostros (Sun et al, 2013), modelos de actuadores planares (Xu, Dinavahi and Xu, 2016), etc.…”
Section: Introductionunclassified