2022
DOI: 10.1049/ipr2.12572
|View full text |Cite
|
Sign up to set email alerts
|

An automatic breast computer‐aided diagnosis scheme based on a weighted fusion of relevant features and a deep CNN classifier

Abstract: Mammography continues to play a central part in the early breast masses diagnosis and has raised several challenges in breast cancer detection. Nevertheless, it remains still difficult to detect abnormalities in a dense breast and some benign lesions may have similar appearance with masses. This study proposes a novel Computer-Aided Diagnosis (CADx) allowing benign and malignant mass classification. Accordingly, relevant textural-shape descriptors are proposed, which is the aggregation of a new Local Binary ba… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
3
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
2
1
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(3 citation statements)
references
References 35 publications
0
3
0
Order By: Relevance
“…This innovation incorporates several independent paths inside a block using grouped convolutions. (Gnanasekaran et al, 2020;Joseph et al, 2024;Tsai et al, 2022), (Guan and Loew, 2019;Wang and Yang, 2018;Arputham et al, 2021;Chugh et al, 2022;Al-Antari et al, 2018a;Kurek et al, 2018;Thirunavukkarasu et al, 2022;Albalawi et al, 2022;Gargouri et al, 2022;Karthiga et al, 2022;Jafarzadeh Ghoushchi et al, 2021;AlGhamdi and Abdel-Mottaleb, 2021;Oyelade and Ezugwu, 2022;Kumar and Gudur, 2023;Diniz et al, 2018;El Houby and Yassin, 2021;Guan et al, 2020;Tavakoli et al, 2019;Altan, 2020;Kumar Singh et al, 2022;Duggento et al, 2019;Deb et al, 2023;Gao et al, 2020;Houssein et al, 2022;Patil and Biradar, 2021;Sakthivel et al, 2022a;Raaj, 2023;Sridevi and Samath, 2023;Alfifi et al, 2020;Arora et al, 2020;Ranjbarzadeh et al, 2023a;Wang et al, 2021c;Wimmer et al, 2021;Wu et al, 2019;Zhang et al, 2021bZhang et al, , 2018 It is a custom architecture for the extraction and classification of features. Convolutional layers are typically used to capture spatial features, pooling layers to downsample, and fully conne...…”
Section: Techniques References Descriptionmentioning
confidence: 99%
See 2 more Smart Citations
“…This innovation incorporates several independent paths inside a block using grouped convolutions. (Gnanasekaran et al, 2020;Joseph et al, 2024;Tsai et al, 2022), (Guan and Loew, 2019;Wang and Yang, 2018;Arputham et al, 2021;Chugh et al, 2022;Al-Antari et al, 2018a;Kurek et al, 2018;Thirunavukkarasu et al, 2022;Albalawi et al, 2022;Gargouri et al, 2022;Karthiga et al, 2022;Jafarzadeh Ghoushchi et al, 2021;AlGhamdi and Abdel-Mottaleb, 2021;Oyelade and Ezugwu, 2022;Kumar and Gudur, 2023;Diniz et al, 2018;El Houby and Yassin, 2021;Guan et al, 2020;Tavakoli et al, 2019;Altan, 2020;Kumar Singh et al, 2022;Duggento et al, 2019;Deb et al, 2023;Gao et al, 2020;Houssein et al, 2022;Patil and Biradar, 2021;Sakthivel et al, 2022a;Raaj, 2023;Sridevi and Samath, 2023;Alfifi et al, 2020;Arora et al, 2020;Ranjbarzadeh et al, 2023a;Wang et al, 2021c;Wimmer et al, 2021;Wu et al, 2019;Zhang et al, 2021bZhang et al, , 2018 It is a custom architecture for the extraction and classification of features. Convolutional layers are typically used to capture spatial features, pooling layers to downsample, and fully conne...…”
Section: Techniques References Descriptionmentioning
confidence: 99%
“…From these tables we can infer that a customized CNN is the most common approach used for the classification of breast density. (Gargouri et al, 2022;Malathi and Latha, 2023;Dafni Rose et al, 2022;Saber et al, 2023;Abdelhafiz et al, 2020) (Patil and Biradar, 2021;Patil et al, 2022;Ragab et al, 2021) Beginning with seed points, it gradually expands regions by incorporating neighboring pixels that share specific similarity criteria, like intensity or texture. The method continues until the termination conditions are satisfied, which ensures that the region reaches the desired size or meets a boundary.…”
Section: Breast Density Classificationmentioning
confidence: 99%
See 1 more Smart Citation