The rise in the demand for animal products due to demographic and dietary changes has exacerbated difficulties in addressing societal concerns related to the environment, human health, and animal welfare. As a response to this challenge, Precision Livestock Farming (PLF) technologies are being developed to monitor animal health and welfare parameters in a continuous and automated way, offering the opportunity to improve productivity and detect health issues at an early stage. However, ethical concerns have been raised regarding their potential to facilitate the management of production systems that are potentially harmful to animal welfare, or to impact the human-animal relationship and farmers' duty of care. Using the Five Domains Model (FDM) as a framework, the aim is to explore the potential of PLF to help address animal welfare and to discuss potential welfare benefits and risks of using such technology. A variety of technologies are identified and classified according to their type [sensors, bolus, image or sound based, Radio Frequency Identification (RFID)], their development stage, the species they apply to, and their potential impact on welfare. While PLF technologies have promising potential to reduce the occurrence of diseases and injuries in livestock farming systems, their current ability to help promote positive welfare states remains limited, as technologies with such potential generally remain at earlier development stages. This is likely due to the lack of evidence related to the validity of positive welfare indicators as well as challenges in technology adoption and development. Finally, the extent to which welfare can be improved will also strongly depend on whether management practices will be adapted to minimize negative consequences and maximize benefits to welfare.