Pancreatic cancer is one of the leading causes of cancer-related deaths worldwide. Pancreatic lesions consist of both neoplastic and non-neoplastic lesions and often pose a diagnostic and therapeutic challenge due to similar clinical and radiological features. In recent years, pancreatic lesions have been discovered more frequently as incidental findings due to the increased utilization and widespread availability of abdominal cross-sectional imaging. Therefore, it becomes imperative to establish an early and appropriate diagnosis with meticulous differentiation in an attempt to balance unnecessary treatment of benign pancreatic lesions and missing the opportunity for early intervention in malignant lesions. Endoscopic ultrasound (EUS) has become an important diagnostic modality for the identification and risk stratification of pancreatic lesions due to its ability to provide detailed imaging and acquisition of tissue samples for analysis with the help of fine-needle aspiration/biopsy. The recent development of EUS-based technology, including contrast-enhanced endoscopic ultrasound, real-time elastography–endoscopic ultrasound, miniature probe ultrasound, confocal laser endomicroscopy, and the application of artificial intelligence has significantly augmented the diagnostic accuracy of EUS as it enables better evaluation of the number, location, dimension, wall thickness, and contents of these lesions. This article provides a comprehensive overview of the role of the different types of EUS available for the diagnosis and differentiation of pancreatic cancer from other pancreatic lesions while discussing their key strengths and important limitations.