SUMMARYMitotic inheritance of identical cellular memory is crucial for development in multicellular organisms. The cell type-specific epigenetic state should be correctly duplicated upon DNA replication to maintain cellular memory during tissue and organ development. Although a role of DNA replication machinery in maintenance of epigenetic memory has been proposed, technical limitations have prevented characterization of the process in detail. Here, we show that INCURVATA2 (ICU2), the catalytic subunit of DNA polymerase a in Arabidopsis, ensures the stable maintenance of repressive histone modifications. The missense mutant allele icu2-1 caused a defect in the mitotic maintenance of vernalization memory. Although neither the recruitment of CURLY LEAF (CLF), a SET-domain component of Polycomb Repressive Complex 2 (PRC2), nor the resultant deposition of the histone mark H3K27me3 required for vernalization-induced FLOWERING LOCUS C (FLC) repression were affected, icu2-1 mutants exhibited unstable maintenance of the H3K27me3 level at the FLC region, which resulted in mosaic FLC de-repression after vernalization. ICU2 maintains the repressive chromatin state at additional PRC2 targets as well as at heterochromatic retroelements. In icu2-1 mutants, the subsequent binding of LIKE-HETEROCHROMATIN PROTEIN 1 (LHP1), a functional homolog of PRC1, at PRC2 targets was also reduced. We demonstrated that ICU2 facilitates histone assembly in dividing cells, suggesting a possible mechanism for ICU2-mediated epigenetic maintenance.
KEY WORDS: DNA polymerase a, Epigenetic maintenance, Chromatin assemblyThe catalytic subunit of Arabidopsis DNA polymerase a ensures stable maintenance of histone modification
RESEARCH ARTICLEEpigenetic maintenance by DNA pol a region in subsequent warm growing conditions by an unknown mechanism (De Lucia et al., 2008;Finnegan and Dennis, 2007). Therefore, stable inheritance of H3K27me3 and the concomitant FLC silencing are crucial for the acquisition of floral competence after vernalization.In this study, we presented new evidence that ICU2 is specifically involved in the maintenance of repressive histone marks during mitoses, but not in the mark deposition on histones, by analyzing the mitotic maintenance of vernalization memory in icu2-1 mutants. In addition, the role of ICU2 in silencing diverse chromatin loci and the functional relationship of ICU2 with PRC2 and LHP1 were also examined. Lastly, we identified a possible mechanism for ICU2-mediated epigenetic inheritance by analyzing DNA replication-dependent chromatin assembly in icu2-1 mutant plants.
MATERIALS AND METHODS
Plant materials, growing conditions, histochemical GUS staining and microscopyAll plants used in this study originated from the Col-0 background except for the icu2-1 (En-2), polα (C24) and clf-2 (Ler) mutants. To generate icu2-1 FRI and clf-2 FRI, each mutant allele was introduced into FRI-Col through five backcrosses. The plants were grown in either long-day (16 hour light/8 hour dark) or short-day (8 hour light/16 hour dark) ...