SoftcOVel: reprint of the hardcover 1st edition 2004 The use of general descriptive names, registered names trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
Preface
Who should read this text?This text is intended for students interested in the design of classical and novel IC engine control systems. Its focus lies on the control-oriented mathematical description of the physical processes involved and on the model-based control system design and optimization. This text has evolved from a lecture series held during the last several years in the mechanical engineering (ME) department at ETH Zurich. The presumed audience is graduate ME students with a thorough understanding of basic thermodynamic and fluid dynamics processes in internal combustion engines (ICE). Other prerequisites are knowledge of general ME topics (calculus, mechanics, etc.) and a first course in control systems. Students with little preparation in basic ICE modeling and design are referred to [52]
Why has this text been written?Internal combustion engines represent one of the most important technological success stories in the last 100 years. These systems have become the most frequently used sources of propulsion energy in passenger cars. One of the main reasons that this has occurred is the very high energy density of liquid hydrocarbon fuels. As long as fossil fuel resources are used to fuel cars, there are no foreseeable alternatives that offer the same benefits in terms of cost, safety, pollutant emission and fuel economy (always in a total cycle, or "wellto-wheel" sense, see e.g., [5] and [55]).Internal combustion engines still have a substantial potential for improvements; Diesel (compression ignition) engines can be made much cleaner and Otto (spark ignition) engines still can be made much more fuel efficient. Each goal can be achieved only with the help of control systems. Moreover, with the systems becoming increasingly complex, systematic and efficient system VI Preface design procedures have become technological and commercial necessities. This text addresses these issues by offering an introduction to model-based control system design for ICE.
What can be learned from this text?The primary emphasis is put on the ICE (torque production, pollutant formation, etc.) and its auxiliary devices (air-charge control, mixture formation, pollutant abatement systems, etc.). Mathematical models for some of these processes will be developed below. Using these models, selected feedforward and feedback control problems will then be discussed.A model-based approach is chosen because, even though more cumbersome in the beginning, it after proves to be the most cost-effective in the long run. Especially the control system development and calibration processes benefit greatly from mathematical models at early project stages.The appendix contains a brief summary of the most important control...