An asymptotic approach for a Schroedinger type equation with a non selfadjoint slowly varying Hamiltonian of a special type is developed. The Hamiltonian is assumed to be the result of a small perturbation of an operator with a twofold degeneracy (turning) point, which can be diagonalized at this point. The non-adiabatic transformation of modes is studied in the case where two small parameters are dependent: the parameter characterizing an order of the perturbation is a square root of the adiabatic parameter. The perturbation of the Hamiltonian produces a close pair of simple degeneracy points. Two regimes of mode transformation for the Schroedinder type equation are identified: avoided crossing of eigenvalues, corresponding to complex degeneracy points, and an explicit unavoidable crossing (with real degeneracy points).Both cases are treated by a method of matched asymptotic expansions in the context of a unifying approach. An asymptotic expansion of the solution near a crossing point containing the parabolic cylinder functions is constructed, and the transition matrix connecting the coefficients of adiabatic modes to the left and to the right of the degeneracy point is derived.Results are illustrated by an example: fermion scattering governed by the Dirac equation.