The data-intensive service provision is characterized by the large of scale of services and data and also the high-dimensions of QoS. However, most of the existing works failed to take into account the characteristics of data-intensive services and the effect of the big data sets on the whole performance of service provision. There are many new challenges for service provision, especially in terms of autonomy, scalability, adaptability, and robustness. In this paper, we will propose a discrete particle swarm optimization algorithm to resolve the data-intensive service provision problem. To evaluate the proposed algorithm, we compared it with an ant colony optimization algorithm and a genetic algorithm with respect to three performance metrics.