Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The Nong Yao field is a marginal oil field that presents many challenges, both geological (thin hydrocarbon column and structural uncertainty due to shallow gas effects) and with well design (shallow depth and unconsolidated reservoirs). The field has been on production for almost five years with water cut in most wells now over 90%. The key to extending field life is identifying new infill locations, with advanced technology required to identify and drill these targets. To improve seismic image and structural definition, the seismic data was reprocessed in 2016, utilizing the latest technologies including Broadband Processing and Full Waveform Inversion. This detected local unswept structures and thin reservoirs allowing for identification of infill targets. New generation hydrocarbon saturation cased hole logs were run in wells to identify swept versus bypassed oil areas. Many infill opportunities required complex 3-D well trajectories and innovative completions. To achieve these objectives, technology such as high build rate rotary steerable systems, advanced real time survey corrections, a multilayer bed boundary detection tool, rotational friction transducer and inflow control devices were implemented. After four years of production, a key well exhibited significantly more production than expected, indicating a much larger reservoir than modelled. However, water cut in this well had reached 98%, so infill wells were required in order to extend production. The reprocessed seismic indicated that the structure extended further to the east of the existing producer than initially modelled. A cased hole saturation log was acquired in an existing well drilled near the planned landing location, which showed that the reservoir was actually swept in this area. Instead, the infill well was landed and drilled in the opposite direction in this eastern part of the structure, keeping the heel away from the water, but providing a much more challenging well path. A high-build rate rotary steerable system, advanced real time survey correction and rotational friction transducer were used to safely deliver this complex 3-D well profile and avoid collision risk from offset wells. The multilayer bed boundary detection tool was then used to ensure the horizontal well stayed as high as possible whilst remaining within the reservoir. Lastly, an inflow control device was installed in the horizontal section to delay water production. The well came online with 0% water cut and is an excellent producer. Similar methods have been adopted at other locations to identify and drill infill targets with great success. Collaboration across disciplines is key, as input is required from the geologist, geophysicist, petrophysicist, reservoir engineer, drilling engineer and completion engineer to identify, drill and produce these infill targets. Implementation of this approach continues to add new volumes and extend field life.
The Nong Yao field is a marginal oil field that presents many challenges, both geological (thin hydrocarbon column and structural uncertainty due to shallow gas effects) and with well design (shallow depth and unconsolidated reservoirs). The field has been on production for almost five years with water cut in most wells now over 90%. The key to extending field life is identifying new infill locations, with advanced technology required to identify and drill these targets. To improve seismic image and structural definition, the seismic data was reprocessed in 2016, utilizing the latest technologies including Broadband Processing and Full Waveform Inversion. This detected local unswept structures and thin reservoirs allowing for identification of infill targets. New generation hydrocarbon saturation cased hole logs were run in wells to identify swept versus bypassed oil areas. Many infill opportunities required complex 3-D well trajectories and innovative completions. To achieve these objectives, technology such as high build rate rotary steerable systems, advanced real time survey corrections, a multilayer bed boundary detection tool, rotational friction transducer and inflow control devices were implemented. After four years of production, a key well exhibited significantly more production than expected, indicating a much larger reservoir than modelled. However, water cut in this well had reached 98%, so infill wells were required in order to extend production. The reprocessed seismic indicated that the structure extended further to the east of the existing producer than initially modelled. A cased hole saturation log was acquired in an existing well drilled near the planned landing location, which showed that the reservoir was actually swept in this area. Instead, the infill well was landed and drilled in the opposite direction in this eastern part of the structure, keeping the heel away from the water, but providing a much more challenging well path. A high-build rate rotary steerable system, advanced real time survey correction and rotational friction transducer were used to safely deliver this complex 3-D well profile and avoid collision risk from offset wells. The multilayer bed boundary detection tool was then used to ensure the horizontal well stayed as high as possible whilst remaining within the reservoir. Lastly, an inflow control device was installed in the horizontal section to delay water production. The well came online with 0% water cut and is an excellent producer. Similar methods have been adopted at other locations to identify and drill infill targets with great success. Collaboration across disciplines is key, as input is required from the geologist, geophysicist, petrophysicist, reservoir engineer, drilling engineer and completion engineer to identify, drill and produce these infill targets. Implementation of this approach continues to add new volumes and extend field life.
Tight oil reservoirs are of paramount importance for an operator holding several fields with important oil potential in Illizi basin, southeastern Algeria. Formation tightness, the presence of nonconnected sand lenses, and the lack of a geological model made it very difficult to maintain the oil production in the studied Devonian reservoir. Consequently, the service company and operator adopted an integrated approach to devise solutions that could restore production in a mature tight oil field that had been closed in 2011. Construction of a geological model for the studied reservoir was challenging because of the high uncertainty in water saturation interpretation caused by the formation water properties (fresh water). A multifunction pulsed neutron service was proposed to provide standalone cased-hole formation evaluation and reservoir saturation monitoring. A unique modeling approaches was applied to characterize the studied tight reservoir and evaluate the reserves based on advanced uncertainty analysis. A hydraulic fracturing design workflow in a reservoir centric stimulation to production software was developed using an integrated approach (geological and geomechanical models) to place the fracture in the optimum reservoir quality and connect the sand lens bodies. Two existing wells were selected to run with the pulsed neutron service, resulting in acquisition of comprehensive reservoir rock and fluid content data. The interpreted logs served to reduce the uncertainty in water saturation modeling and to enable perfect history matching of the producing wells. The constructed geological model was the basis for improving the stimulation designs and maximizing production for future wells. With significant oil initially in place (STOIIP) estimated from the model, the field showed more promise than the previous recorded recovery factor of less than 1%. The field development plan (FDP) identified the location of 20 new infill drilling wells targeting the sweet spots and considering the optimal well spacing. In addition, the plan specified a systematic hydraulic fracturing stimulation job for each newly drilled well to connect and produce the sand body lenses. Recently, a successful campaign of hydraulic fracturing operations was executed on four wells, allowing the operator to resume production from the field. The fracturing performance minimized water cut despite the water-oil-contact (WOC) proximity, and it enhanced the oil recovery. The developed integrated approach has already shown its effectiveness in returning a field to production and improving oil recovery. The approach can be replicated on subsequent wells in the field as well as on similar tight reservoirs all over the world.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.