Abstract-There are many benefits for the deployment of multiple autonomous industrial robots to carry out a task, particularly if the robots act in a highly collaborative manner. Collaboration can be possible when each robot is able to autonomously explore the environment, localize itself, create a map of the environment and communicate with other robots. This paper presents an approach to the modeling of the collaboration problem of multiple robots determining optimal base positions and orientations in an environment by considering the team objectives and the information shared amongst the robots. It is assumed that the robots can communicate so as to share information on the environment, their operation status and their capabilities. The approach has been applied to a team of robots that are required to perform complete surface coverage tasks such as grit-blasting and spray painting in unstructured environments. Case studies of such applications are presented to demonstrate the effectiveness of the approach.