Image retrieval is an important system for retrieving similar images by searching and browsing in a large database. The image retrieval system can be a reliable tool for people to optimize the use of image accumulation, and finding efficient methods to retrieve images is very important. Recent decades have marked increased research interest in field image retrieval. To retrieve the images, an important set of features is used. In this work, a combination of methods was used to examine all the images and detect images in a database according to a query image. Linear Discriminant Analysis (LDA) was used for feature extraction of the images into the dataset. The images in the database were processed by extracting their important and robust features and storing them in the feature store. Likewise, the strong features were extracted for specific query images. By using some Meta Heuristic algorithms such as Cuckoo Search (CS), Ant Colony Optimization (ACO), and using an artificial neural network such as single-layer Perceptron Neural Network (PNN), similarity was evaluated. It also proposed a new two method by hybridized PNN and CS with fuzzy logic to produce a new method called Fuzzy Single Layer Perceptron Neural Network (FPNN), and Fuzzy Cuckoo Search to examine the similarity between features for query images and features for images in the database. The efficiency of the system methods was evaluated by calculating the precision recall value of the results. The proposed method of FCS outperformed other methods such as (PNN), (ACO), (CS), and (FPNN) in terms of precision and image recall. ABSTRAK: Imej dapatan semula adalah sistem penting bagi mendapatkan imej serupa melalui carian imej dan melayari pangkalan besar data. Sistem dapatan semula imej ini boleh dijadikan alat boleh percaya untuk orang mengoptimum penggunaan pengumpulan imej, dan kaedah pencarian yang berkesan bagi mendapatkan imej adalah sangat penting. Beberapa dekad yang lalu telah menunjukan banyak penyelidikan dalam bidang imej dapatan semula. Bagi mendapatkan imej-imej ini, ciri-ciri set penting telah digunakan. Kajian ini menggunakan beberapa kaedah bagi memeriksa semua imej dan mengesan imej dalam pangkalan data berdasarkan imej carian. Kami menggunakan Analisis Diskriminan Linear (LDA) bagi mengekstrak ciri imej ke dalam set data. Imej-imej dalam pangkalan data diproses dengan mengekstrak ciri-ciri penting dan berkesan daripadanya dan menyimpannya dalam simpanan ciri. Begitu juga, ciri-ciri penting ini diekstrak bagi imej carian tertentu. Persamaan dinilai melalui beberapa algoritma Meta Heuristik seperti Carian Cuckoo (CS), Pengoptimuman Koloni Semut (ACO), dan menggunakan lapisan tunggal rangkaian neural buatan seperti Rangkaian Neural Perseptron (PNN). Dua cadangan baru dengan kombinasi hibrid PNN dan CS bersama logik kabur bagi menghasilkan kaedah baru yang disebut Lapisan Tunggal Kabur Rangkaian Neural Perceptron (FPNN), dan Carian Cuckoo Kabur bagi mengkaji persamaan antara ciri carian imej dan imej pangkalan data. Nilai kecekapan kaedah sistem dinilai dengan mengira ketepatan mengingat pada dapatan hasil. Kaedah FCS yang dicadangkan ini mengatasi kaedah lain seperti (PNN), (ACO), (CS) dan (FPNN) dari segi ketepatan dan ingatan imej.