Magnetic-field probes can be used for electromagnetic interference measurement of high-speed circuits. The main magnetic probe performance includes sensitivity, spatial resolution, electric-field suppression ratio (EFSR), and measurement accuracy. In this article, a pair of differential magnetic-field probes is proposed to improve measurement accuracy without reducing sensitivity. The proposed differential probes consist of two asymmetric loop probes, which are designed in the same plane and separated by a row of periodic vias. The proposed differential probes are fabricated under PCB process. High accuracy can be achieved by measuring difference between outputs of the two probes. In addition, EFSR can be improved by size optimization of the differential magnetic-field probes. Simulation and measurement results show the operating bandwidth is from 100 MHz to 12 GHz, the measurement error is 3.4% and the EFSR is about 40 dB. The proposed probes have higher measurement accuracy and higher EFSR than the conventional single probe, and larger operation bandwidth than the stacked differential probes.