The frequent occurrence of urban flood disasters is a major and persistent problem threatening the safety of cities in China and elsewhere in the world. As this issue is so pervasive, exploring new methods for more effective risk prevention and urban flood disaster control is now being prioritized. Taking the case of the city of Zhengzhou as an example, this paper proposes using geological, hydrogeological, ecological, and environmental conditions together with appropriate engineering designs to address the problem of urban flooding. The strategy includes integrating urban sponge–hydrogeological conditions, ecological engineering, and the construction of deep underground water storage facilities. Field investigations, data collection and analysis, in situ observations, testing, and laboratory experiments, are analyzed to explain the formation mechanism and means to mitigate flood disasters in Zhengzhou. Our results suggest that the appropriate use of geological, ecological, and hydrogeological aspects, combined with effective engineering practices, can significantly improve the city’s flood control capacity. These measures can solve the problem of the “once-in-a-millennium” occurrence of torrential rain disasters such as the “720” torrential rainstorm that has affected the city of Zhengzhou.